Overview

  • MDA is the only nonprofit health agency in the world dedicated to fighting ALS and more than 40 other neuromuscular diseases with comprehensive research, health care services, advocacy and education programs.
  • Since its inception, MDA has dedicated almost $325 million to ALS research and health care services.
  • We currently support nearly 50 ALS research projects worldwide with a total commitment of $15 million.
  • In 2013, MDA committed more than $7.8 million to services designed to help relieve the day-to-day challenges faced by our ALS families.
  • Through our advocacy efforts and community events, we actively influence public policy and therapy development, as with our recent first-of-its-kind, national comprehensive cost-of-illness study.


What is amyotrophic lateral sclerosis?

ALS is a disease of the parts of the nervous system that control voluntary muscle movement. In ALS, motor neurons (nerve cells that control muscle cells) are gradually lost. As these motor neurons are lost, the muscles they control become weak and then nonfunctional.

The word “amyotrophic” comes from Greek roots that mean “without nourishment to muscles” and refers to the loss of signals nerve cells normally send to muscle cells. “Lateral” means “to the side” and refers to the location of the damage in the spinal cord. “Sclerosis” means “hardened” and refers to the hardened nature of the spinal cord in advanced ALS.

In the United States, ALS also is called Lou Gehrig’s disease, named after the Yankees baseball player who died of it in 1941. In the United Kingdom and some other parts of the world, ALS is often called motor neurone disease in reference to the cells that are lost in this disorder.

Back to top

Who gets ALS?

ALS usually strikes in late middle age (the late 50s is average) or later, although it also occurs in young adults and even in children, as well as in very elderly people. Some forms of ALS have their onset in youth. Men are slightly more likely to develop ALS than are women. Studies suggest an overall ratio of about 1.2 men to every woman who develops the disorder.

Back to top

What causes ALS?

Years ago, it was widely believed that there might be one cause to explain all cases of ALS. Today, doctors and scientists know that can’t be the case, and they’re working to identify the multiple causes of the disorder. One thing they do know is that ALS cannot be "caught," or transmitted from one person to another.

The causes of the vast majority of ALS cases are still unknown. Investigators theorize that some individuals may be genetically predisposed to developing the disease, but only do so after coming in contact with an environmental trigger. The interaction of genetics and environment may hold clues as to why some individuals develop ALS.

Although the majority of ALS cases are sporadic, meaning there is no family history of the disease, about 5 to 10 percent of cases are familial, meaning the disease runs in the family. A common misconception is that only familial ALS is "genetic." Actually, both familial and sporadic ALS can stem from genetic causes. And some people who have a diagnosis of sporadic ALS may carry ALS-causing genetic mutations that can be passed on to offspring. A genetic counselor can help people with ALS understand inheritance and any associated risks for family members.

For a more detailed discussion of possible causes of sporadic ALS and the genetics of familial ALS, please see Causes/Inheritance.

Back to top

What are the symptoms of ALS?

ALS results in muscles that are weak and soft, or stiff, tight and spastic. Muscle twitches and cramps are common; they occur because degenerating axons (long fibers extending from nerve-cell bodies) become “irritable.” Symptoms may be limited to a single body region, or mild symptoms may affect more than one region. When ALS begins in the bulbar motor neurons, the muscles used for swallowing and speaking are affected first. Rarely, symptoms begin in the respiratory muscles.

As ALS progresses, symptoms become more widespread, and some muscles become paralyzed while others are weakened or unaffected. In late-stage ALS, most voluntary muscles are paralyzed.

The involuntary muscles, such as those that control the heartbeat, gastrointestinal tract and bowel, bladder and sexual functions are not directly affected in ALS. Sensations, such as vision, hearing and touch, are also unaffected.

About 50 percent of people with ALS develop some degree of cognitive (thinking) or behavioral abnormality. Usually, cognitive and behavioral symptoms in ALS range from mild (such that only close family members may notice a difference) to moderate.

For more information on ALS symptoms, see Signs and Symptoms and Medical Management.

Back to top

What is the life expectancy in ALS?

Each person's disease course is unique. There are a number of examples of people who are leading productive and active lives more than two decades after an ALS diagnosis.

Standard longevity statistics citing an average survival time of three to five years after diagnosis may be somewhat out of date because changes in supportive care and technology — especially for breathing and nutrition — may help prolong life.

For more information on the disease course, see Medical Management.

Back to top

What can be done about ALS?

Medical interventions and technology have vastly improved the quality of life for people with ALS, by assisting with breathing, nutrition, mobility and communication. Proper management of symptoms, and proactive use of medical interventions and equipment, can make a positive difference in day-to-day living, and potentially may lengthen survival. The FDA-approved drug riluzole (brand name Rilutek) has been shown to slightly increase longevity.

What is the status of ALS research?

A number of strategies and approaches are being tested around the world, both in the laboratory and in human clinical trials. MDA's basic science program is constantly pursuing new avenues of research to understand the underlying causes of ALS, with a sharp focus on developing treatments.

As of 2012, intense research is being conducted on genetic factors in ALS, the role of the immune system in ALS, and the role of cells other than nerve cells in this disease. In addition, many medications and other treatments are being tested for potential benefits in ALS. For details about current ALS research, go to Research and Clinical Trials.

Back to top