
Updates in Skeletal Muscle Channelopathies

Updates in Skeletal Muscle Channelopathies

Presenter: Sub H. Subramony, MD

Professor of Neurology and Pediatrics University of Florida College of Medicine Gainesville, FL

Program Agenda and Objectives

- Recognize symptoms
- Use of laboratory and genetic testing to accurately diagnose ion channel diseases involving muscle

Treatments & Management

 Review evidence-based guidelines and best practices to coordinate care

 Explore current management of patients with ion channel diseases

Resources

Identify additional tools and resources

MDA

Overview of Skeletal Muscle Channelopathies

Etiology

 Inherited mutations in genes coding for ion channels^{1,2}

Classification

- Non-dystrophic myotonias^{1,2}
- Periodic paralyses^{1,2}

Epidemiology: rare diseases

- All channelopathies¹: 1.12/100,000
- Non-dystrophic myotonia¹
 - From 0.06 (Na channel myotonia) to 0.52 (myotonia congenita) per 100,000
- Periodic paralysis²
 - 1/100,000 (hypokalemic)
 - 1/200,000 (hyperkalemic)
 - 1/1,000,000 (Andersen-Tawil syndrome)

Clinical symptoms

- Fluctuating symptoms including muscle stiffness, spasms, and intermittent weakness with intervening normalcy²
 - Relatively common symptoms in the population
 - Need to recognize definite cases
- QoL impacted by muscular symptoms, pain, and fatigue^{3,4}
- Normal life expectancy with some exceptions⁴
- Occasionally other acquired and genetic diseases can lead to a similar phenotype⁵

QoL, quality of life.

1. Horga A, et al. Neurology. 2013;80(16):1472-1475. 2. Sansone VA. Continuum (Minneap Minn). 2019;25(6):1696-1711. 3. Phillips L, Trivedi JR. Neurotherapeutics. 2018;15(4):954-965.

4. Stunnenberg BC, et al. Muscle Nerve. 2020;62(4):430-444. 5. Matthews E, et al. Pract Neurol. 2021;21(3):196-205.

MDA

Classification – Genotype/Phenotype

	Phenotypes	Genotypes	
Non-dystrophic myotonia ^{1,2}	Myotonia congenita	CLCN1 mutations (AD/AR)	
	Paramyotonia congenita	SCN4A mutations (AD)	
	Sodium channel myotonia		
Periodic paralysis ¹⁻⁴	Hyperkalemic periodic paralysis	SCN4A mutations	
	Hypokalemic periodic paralysis	CACNA1S mutations	
	Andersen-Tawil syndrome	KCNJ2 - KCNJ5 mutations	
	Thyrotoxic periodic paralysis	KCNJ18 (susceptibility)	

AD, autosomal dominant; AR, autosomal recessive.

1. Stunnenberg BC, et al. Muscle Nerve. 2020;62(4):430-444. 2. Matthews E, et al. Pract Neurol. 2021;21(3):196-205. 3. Jitpimolmard N, et al. Curr Treat Options Neurol. 2020;22(10):34. 4. Maggi L, et al. Cells. 2021;10(6):1521.

Overall Diagnostic Approach

Approach¹⁻³

Identify characteristic phenotype and review typical family history

Electrophysiological testing

Genetic testing

Myotonia predominant¹⁻³

- 1. Rule out a myotonic dystrophy diagnosis
- 2. Confirm presence of myotonia by EMG. Perform short exercise test (SET), long exercise test (LET) as needed, cooling studies
- 3. Consider testing for a comprehensive myotonia gene panel

Episodic weakness predominant¹⁻³

- 1. Confirm muscle inexcitability during episodes of weakness, if possible
- 2. EMG: look for myotonia, perform LET and cooling studies
- 3. Consider acquired serum potassium abnormalities: endocrine and renal disease, thyrotoxic
- 4. Mutation testing for CACNA1S, SCN4A, and KCNJ2

EMG, electromyography.

1. Maggi L, et al. Cells. 2021;10(6):1521. 2. Stunnenberg BC, et al. Muscle Nerve. 2020;62(4):430-444. 3. Matthews E, et al. Pract Neurol. 2021;21(3):196-204.

Electromyography Guides

- Obtain supramaximal CMAP and keep stimulating electrode in position
- Set stimulator to repetitive stimulation mode at 1 stimulation every 10 seconds
- Voluntary maximal contraction for 10 seconds and relax
- Switch on stimuli within 2 seconds then 1/10 seconds for 50 seconds, assess CMAPs
- CMAP change in controls: -1to +20%

Long exercise test (LET)¹ (ADM, TA)

- Obtain supramaximal CMAP
- Exercise muscle maximally for 5 minutes
- Ask the patient to relax the muscle completely
- Obtain supramaximal CMAP every minute for 5 minutes, then every 5 minutes for 40-45 minutes, assess CMAPs

Cooling test² (ADM, APB)

- Obtain supramaximal CMAP
- Cool hand in ice cold water, temperature down to 20°C
- Repeat CMAP with SET

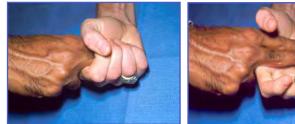
Fournier patterns¹

MD

- Pattern I: SET with postexercise decline in CMAP, which worsens with repeating exercise
- Pattern II: SET with postexercise decline in CMAP, which improves with repeating exercise
- Pattern III: SET with no significant changes post exercise
- Pattern IV: LET with immediate increase and then delayed decline in CMAP amplitude
- Pattern V: LET with delayed decrease in CMAP only

ADM, abductor digiti minimi; APB, abductor pollicis brevis; CMAP, compound muscle action potential; TA, transverse abdominals. 1. Fournier E, et al. *Ann Neurol.* 2004;56(5):650-661. 2. Fournier E, et al. *Ann Neurol.* 2006;60(3):356-365.

Myotonia Congenita



Mutations in the *CLCN1* gene coding for a chloride channel $(CIC1)^1$

- Autosomal dominant: Thomsen's disease^{1,2}
- Autosomal recessive: Becker myotonia congenita^{1,2}

Clinical presentation

- Onset in childhood, maybe earlier^{1,2}
- Stiffness, often generalized, and fluctuating depending on myotonia¹⁻³
 - Hands: grip myotonia
 - Percussion myotonia
 - Eye: Eye closure myotonia, lid lag, eye movement (diplopia)
 - Gait problems, unexpected falls
 - Warm up phenomenon
 - Aggravation by cold temperatures¹
- No progressive atrophy; muscular appearance but poor motor skills^{1,2}
- Transitory weakness^{1,2,4}
 - · Often present at the onset of voluntary activity

Grip myotonia

Eyelid myotonia

Muscular appearance

Photos courtesy of Dr. Subramony.

Myotonia Congenita – Diagnosis

Electrophysiological testing¹⁻³

- No abnormalities in routine SNCS and MNCS data
- Diffuse myotonic potentials and normal motor unit potentials in EMG analysis

Short exercise test (SET)¹⁻⁴

- Immediate decline in CMAP amplitude (by 17% to 90%) with recovery over several seconds in >80% of cases⁵
- Repetitive trials show improvement in CMAP decline
- Cooling and long exercise tests normal but cooling may exacerbate post-exercise CMAP decline

Differential diagnosis¹⁻³

- Myotonic dystrophy
- SCN4A: sodium channel myotonia, paramyotonia congenita

Targeted mutation testing¹

CMAP, compound muscle action potential; EMG, electromyography; MNCS, motor nerve conduction study; SNCS, sensory nerve conduction study.

1. Stunnenberg BC, et al. Muscle Nerve. 2020;62(4):430-444. 2. Subramony SH, et al. Muscle Nerve. 1983;6(5):374-379. 3. Matthews E, et al. Pract Neurol. 2021;21(3):196-204.

4. Phillips L, Trivedi JR. Neurotherapeutics. 2018;15(4):954-965. 5. Fournier E, et al. Ann Neurol. 2004;56(5):650-661. 6. Jitpimolmard N, et al. Curr Treat Options Neurol. 2020;22(10):34.

EMG trace of myotonic discharges⁵

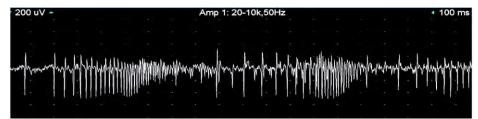


Figure from Jitpimolmard 2020. Open Access (CC-BY-4.0)

SET findings in myotonia congenita

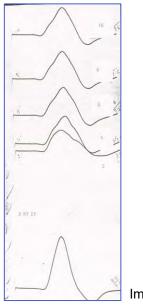


Image courtesy of Dr. Subramony.

Sodium Channel Myotonias

Mutations in the SCN4A gene coding for a sodium channel (Nav1.4)¹

Autosomal dominant

Clinical presentation¹⁻⁴

- Lower mean age at onset than myotonia congenita: 5 vs 10 years of age
 - Severe neonatal episodic laryngospasms can be life threatening
- Resembles myotonia congenita, not paradoxical myotonia
 - Myotonia fluctuans, myotonia permanens, acetazolamide responsive myotonia
 - "Myotonic crisis" or "status myotonicus"
 - Pain, focal features
 - · Features often observed in other sodium channel mutations
 - Attacks of weakness lasting hours
 - Cold temperatures and high potassium diet aggravate myotonia and muscle weakness
 - Some degree of permanent weakness
- SET, LET usually normal (Fournier pattern III) but can overlap with paramyotonia congenita or hyperkalemic periodic paralysis patterns

MRI of the right lower leg²

Figures from Rempe 2020. Used with permission from Elsevier.

Finger flexor weakness in Na channel myotonia Photos courtesy of Dr. Subramony.

Fixed, tight contraction of calf muscles and muscle edema²

LET, long exercise test; MRI, magnetic resonance imaging; SET, short exercise test. 1. Phillips I. Trivedi IR. *Neurotherapeutics* 2018;15(4):954-965; 2. Rempe T. Subramony SH. *Neuromusc*

1. Phillips L, Trivedi JR. Neurotherapeutics. 2018;15(4):954-965. 2. Rempe T, Subramony SH. Neuromuscul Disord. 2020;30(5):424-426. 3. Stunnenberg BC, et al. Muscle Nerve. 2020;62(4):430-444. 4. Jurkat-Rott K, Lehmann-Horn F. J Clin Invest. 2005;115(8):2000-2009.

Paramyotonia Congenita

Mutations in the SCN4A gene coding for a sodium channel (Nav1.4)

- Autosomal dominant
- Allelic to sodium channel myotonia and hyperkalemic periodic paralysis

Clinical presentation

- Myotonic symptoms resembling myotonia congenita
- In contrast to warm-up phenomenon in myotonia congenita, myotonia (and muscle dysfunction) worsens with activity (and cooling) (paradoxical myotonia)
- Overlapping features with other sodium channel disorders
 - Potassium aggravates myotonia
 - Attacks of weakness

Clinical Examination

Diagnosed at 9 years old with "myotonia congenita"

Onset

Childhood

Symptoms

Stiffness and weakness of the head and limbs

- Stiffness every day
- Weakness occurs a few times every month

Physical examination

- Ptosis, mild eyelid myotonia, worsened by activity
- Grip myotonia
- Facial and neck flexor weakness
- Distal>proximal weakness

Paramyotonia Congenita – Diagnosis

Electrophysiological testing¹

- · No abnormalities in routine SNCS and MNCS data
- Diffuse myotonic potentials and normal motor unit potentials in EMG analysis
- Significant decline in CMAP amplitude with cooling

Short exercise test (SET)^{1,2}

- SET similar to myotonia congenita, but repeat test shows worsening defect (Fournier pattern I)
- · Muscle cooling aggravates SET abnormality
- Needle EMG can show increase in myotonic potentials followed by electrical silence

Effect of muscle cooling on CMAP amplitude¹

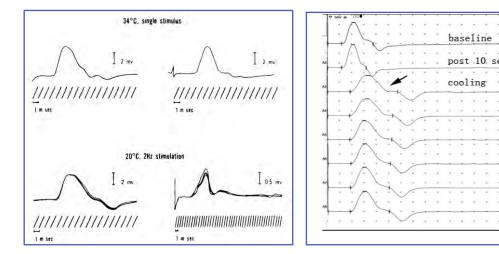
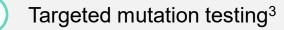



Figure from Subramony 1983. Used with permission from John Willey and Sons.

Image courtesy of Dr. Subramony.

CMAP, compound muscle action potential; EMG, electromyography; MNCS, motor nerve conduction study; SET, short exercise test; SNCS, sensory nerve conduction study. 1. Subramony SH, at al. *Muscle Nerve*. 1983;6(5):374-379. 2. Stunnenberg BC, et al. *Muscle Nerve*. 2020;62(4):430-444. 3. Phillips L, Trivedi JR. *Neurotherapeutics*. 2018;15(4):954-965.

Hyperkalemic Periodic Paralysis

Mutations in the SCN4A gene coding for a sodium channel (Nav1.4)^{1,2}

Autosomal dominant

Clinical presentation¹⁻³

- Onset in first decade of life
- Episodic muscle weakness evolving over a few minutes to hours associated with hyperkalemia
 - Often focal, but can be generalized, with recovery a few hours later
- Attacks affect different parts of the body in a fluctuating manner
- Gentle activity can abort attacks of weakness
- "Rest after exercise" and high potassium diet may trigger weakness episodes; other triggers include pregnancy, stress, and cold exposure
- Permanent weakness can occur later in life

Hyperkalemic Periodic Paralysis – Diagnosis

Laboratory tests^{1,2}

- Usually high serum potassium level, but can be normal or even low in different attacks
- CK can be elevated
- · Myotonia, often subtle, can be observed

Electromyography^{1,3}

- In weak muscle, CMAPs have low amplitude and recover when symptoms resolve
- Needle EMG can show myotonic potentials and fibrillations
 - Reduced or absence of insertional activity in weaker muscles
 - Commensurate decrease in MUP recruitment indicates loss of muscle membrane electrical activity

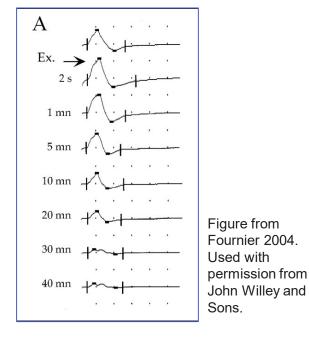
Interictal period

Physical examination^{1,2,4,5}

- Focal weakness can be detected
- Mild myotonia

Electromyography^{1,3,5}

- · Mild myotonia
- Perform "long exercise test": CMAP increase right after exercise but then late decline (Fournier pattern IV)

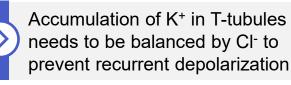

Lid lag from myotonia

MP

Photo courtesy of Dr. Subramony.

LET in periodic paralyses⁶

1. Stunnenberg BC, et al. Muscle Nerve. 2020;62(4):430-444. 2. Matthews E, et al. Pract Neurol. 2021;21(3):196-204. 3. Subramony SH, Wee AS. Neurology. 1986;36(2):173-177.


CK, creatine kinase; CMAP, compound muscle action potential; EMG, electromyography; LET, long exercise test; MUP, motor unit potential.

^{4.} Maggi L, et al. Cells. 2021;10(6):1521. 5. Phillips L, Trivedi JR. Neurotherapeutics. 2018;15(4):954-965. 6. Fournier E, et al. Ann Neurol. 2004;56:650-661.

Mutations in Non-Dystrophic Myotonia and Periodic Paralysis

Myotonia mechanism^{1,2}

Paralysis mechanism^{1,2}

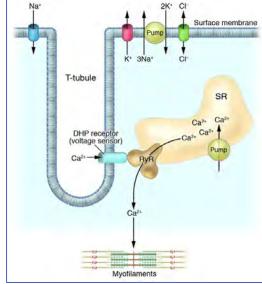
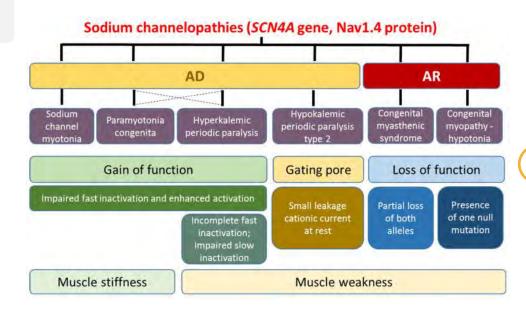



Figure from Jurkat-Rott 2005. Open Access. (<u>CC-BY-4.0</u>)

Importance of SCN4A/Nav1.4 mutations

Figure from Maggi 2021. Open Access. (CC-BY-4.0)

- Gain of function mutations lead to quicker activation and impaired fast inactivation of Nav1.4 and results in Na leakage and myotonia
 - Impaired slow inactivation causes persistent leak and depolarization block leading to hyperkalemic paralysis
- Loss of function mutations lead to CMS or congenital myopathy
- Mutations creating an aberrant gating pore lead to hypokalemic periodic paralysis

AD, autosomal dominant; AR, autosomal recessive; CMS, congenital myasthenic syndrome. 1. Jurkat-Rott K, Lehmann-Horn F. *J Clin Invest*. 2005;115(8):2000-2009. 2. Maggi L, et al. *Cells*. 2021;10(6):1521. MDA

Hypokalemic Periodic Paralysis

Mutations in the CACNA1S gene coding for a calcium channel (Cav1.1) (60%) or in the SCN4A gene coding for a sodium channel (Nav1.4) $(20\%)^1$

Autosomal dominant

Clinical presentation^{1,2}

- · Onset in first and second decade of life
- Episodes of muscle weakness evolve over a few hours
 - Usually generalized with recovery over 1 or 2 days
- Focal attacks are not common
- "Rest after exercise," high carbohydrate/salt diets, and insulin can precipitate attacks
- Permanent weakness can occur later in life, resembling LGMD

Hypokalemic Periodic Paralysis – Diagnosis

During an attack

Laboratory tests^{1,2}

- Low serum potassium level (ie, <3.5 mEq/L)
 - If <2 mEq/L, it suggests an acquired hypokalemia
- CK level is usually normal
- No observation of myotonia

Electromyography¹

• Similar to hyperkalemic periodic paralysis but usually no myotonic discharges

Interictal period

Physical examination usually normal

Electromyography^{2,3}

- Normal examination
- Perform "long exercise test": no CMAP increase right after exercise but shows late decline (Fournier pattern V)
- Less dramatic than hyperkalemic periodic paralysis

Targeted mutation testing⁴

CK, creatine kinase; CMAP, compound muscle action potential.

1. Maggi L, et al. Cells. 2021;10(6):1521.2. Matthews E, et al. Pract Neurol. 2021;21(3):196-204.3. Fournier E, et al. Ann Neurol. 2004;56(5):650-661.

4. Phillips L, Trivedi JR. Neurotherapeutics. 2018;15(4):954-965.

Andersen-Tawil Syndrome

Mutations in the *KCNJ2* (60%) and *KCNJ5* (15%) genes coding for potassium channels¹⁻³

• Autosomal dominant

Clinical presentation^{1,2}

- Episode of hypokalemic periodic paralysis
- Cardiac conduction defects
 - Abnormal EKG including abnormal TU morphology, enlarged U waves, prolonged QU intervals and polymorphic ventricular contractions
 - Torsade, long QT, ventricular fibrillation
 - 20% require devices
- Dysmorphic features
 - Micrognathia, low set ears, hypotelorism
 - · Short fifth finger, clinodactyly, and syndactyly

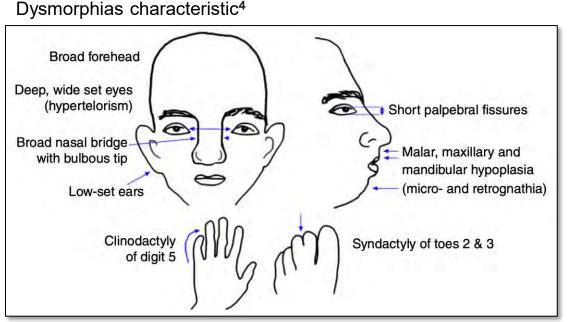
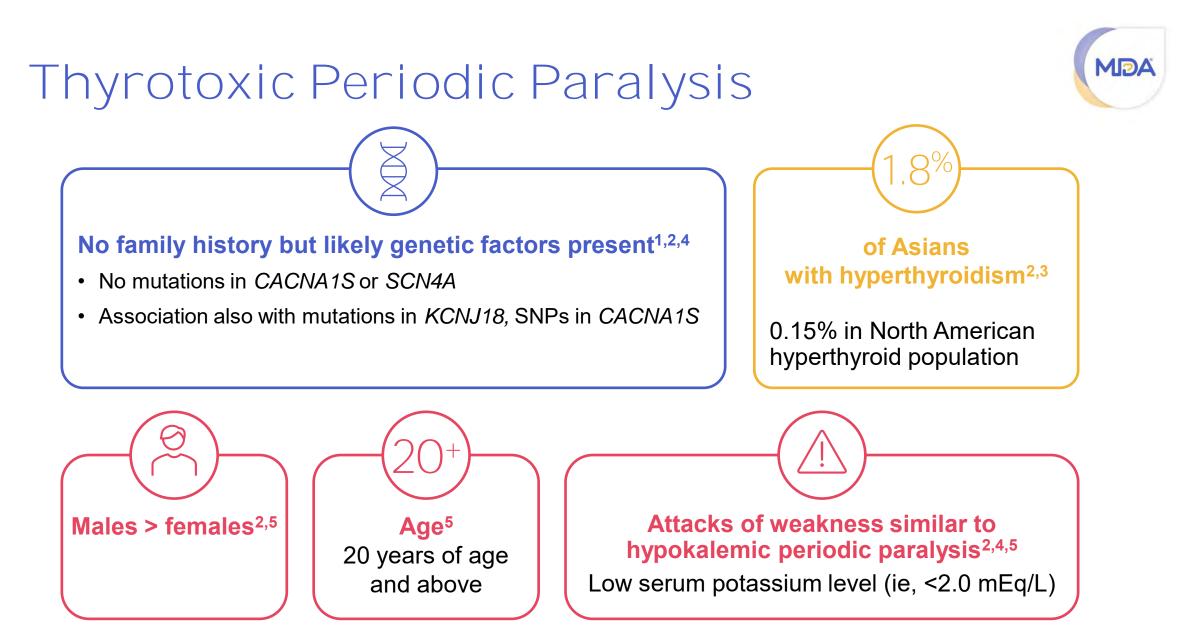



Image from Adams 2016. Reused with permission from The Journal of Physiology @ 2016 The Physiological Society.

SNP, single nucleotide polymorphisms.

1. Phillips L, Trivedi JR. Neurotherapeutics. 2018;15(4):954-965. 2. Batch JT, et al. Cureus. 2020;12(2):e7041. 3. Kung AWC, J Clin Endocrinol Metab. 2006;91(7):2490-2495. 4. Maggi L, et al. Cells. 2021;10(6):1521. 5. Salih M, et al. Neth J Med. 2017;75(8):315-320.

Treatments for Ion Channel Disorders

No treatments are currently approved by the FDA and common medications included in guidelines are used for symptoms management^{1,2}

Non-dystrophic myotonia¹⁻⁴

Periodic paralysis¹⁻³

Drug	Dose	Level of evidence	
Mexiletine	Start 150 mg BID; titration up to 300 mg TID	Level I (RCT) – EMA approval	-
Lamotrigine	Start 25 mg/day; titration up to 300 mg/day	Level II (RCT)	_
Acetazolamide	Start 125 mg BID; titration up to 1000 mg/day	Level III and IV (open-label studies)	
Ranolazine	Start 0.5 g BID; titration up to 1 g BID	Level III (open-label studies)	_
Carbamazepine	Start 100 mg BID; titration up to 1.2 g/day	Level III (RCT)	_

Prophylaxis

Drug		
Acetazolar	nide: 125-1000 mg/day	
Dichlorphe	namide: 50 mg BID; up to 200 mg/day	
K⁺-sparing diuretics (for hypoPP): eg, triamterene 50-150 mg/day		
Thiazide d	uretics (for hyperPP): eg, hydrochlorothiazide 25-100 mg/day	

Acute treatment

Drug	Conditions
Oral potassium up to 200 mEq/day	
IV potassium up to 20 mEq/h, up to 250 mEq/day	Acute hypoPP
Carbohydrate intake up to 2.0 g/kg	
Beta agonists (eg, salbutamol)	 Acute hyperPP

BID, twice daily; EMA, European Medicines Agency; FDA, Food and Drug Administration; hyperPP, hyperkalemic periodic paralysis; hypoPP, hypokalemic periodic paralysis; RCT, randomized controlled trial; TID, three times daily.

1. Jitpimolmard N, et al. Curr Treat Options Neurol. 2020;22(10):34. 2. Phillips L, Trivedi JR. Neurotherapeutics. 2018;15(4):954-965. 3. Stunnenberg BC, et al. Muscle Nerve. 2020;62(4):430-444.

4. Matthews E, et al. Pract Neurol. 2021;21(3):196-205.

Management of Patients With Ion Channel Disorders

Importance of the coordination of care^{1,2}

- Cardiac, renal, and hepatic function monitoring for patients with myotonia congenita treated with mexiletine, lamotrigine, or ranolazine
- Cardiac care for patients with Andersen-Tawil syndrome

Lifestyle and activity^{1,2}

- Dietary management of potassium, salt, and carbohydrate intake; avoidance of cold temperatures (eg, swimming in cold water)
- Exercise
- Pregnancy and anesthesia issues
- Keep limbs warm (all NDM) and use the warm-up phenomenon (myotonia congenita)

Other Disorders Considered Ion Channel Diseases of Muscles

Congenital myopathic syndromes

• From mutations in SCN4A (AR), RYR1, RYR2, CACNA1H, STAC3, ORA1, STIM 1

Scapulo-peroneal syndrome

• From mutations in TRPV4

Congenital myasthenic syndrome

• From mutations in SCN4A (AR), AChR

Resources

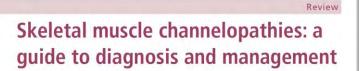
Muscular Dystrophy Association

Periodic Paralysis Association

MDA

https://periodicparalysis.org/

National Organization for Rare Disorders


Muscular Dystrophy Association

https://rarediseases.org/

https://www.mda.org/disease/ion-channel-diseases

Resources (cont.)

Emma Matthews 💿 ,^{1,2} Sarah Holmes,³ Doreen Fialho^{2,3,4}

Matthews E, et al. Pract Neurol. 2021;21(3):196-205.

Curr Treat Options Neurol (2020) 22: 34 DOI 10.1007/s11940-020-00644-2

Neuromuscular Disorders (C Fournier, Section Editor)

Treatment Updates for Neuromuscular Channelopathies

Nantaporn Jitpimolmard, MD^{1,2} Emma Matthews, MRCP, PhD^{1,3} Doreen Fialho, FRCP, PhD^{1,*}

Jitpimolmard N, et al. Curr Treat Options Neurol. 2020;22(10):34.

HHS Public Access

Author manuscript Muscle Nerve. Author manuscript; available in PMC 2021 May 13.

Published in final edited form as: *Muscle Nerve*. 2020 October ; 62(4): 430–444. doi:10.1002/mus.26887.

Guidelines on clinical presentation and management of nondystrophic myotonias

Bas C. Stunnenberg, MD^{#1}, Samantha LoRusso, MD^{#2}, W. David Arnold, MD², Richard J. Barohn, MD³, Stephen C. Cannon, MD, PhD⁴, Bertrand Fontaine, MD, PhD⁵, Robert C. Griggs, MD⁶, Michael G. Hanna, FRCP, FMedSci⁷, Emma Matthews, MRCP, PhD⁷, Giovanni Meola, MD, PhD^{8,9}, Valeria A. Sansone, MD, PhD^{9,10}, Jaya R. Trivedi, MD¹¹, Baziel G.M. van Engelen, MD, PhD¹, Savine Vicart, MD⁵, Jeffrey M. Statland, MD³

Stunnenberg BC, et al. Muscle Nerve. 2020;62(4):430-444.

