

Background

- Myasthenia gravis (MG) is often misdiagnosed, with substantial delay in appropriate therapy initiation
- Numerous treatments have been approved for MG
- This document captures highlights from an MDA webinar with two MG experts.
- View the companion webinar <u>here</u>.

Overview

Age of onset and prognosis

Bimodal age distribution, but can develop at any age

- Incidence peaks: 30-40 and 60-70 years; slow incidence rise thereafter
- Female preponderance: <40 years
- Male preponderance: >50 years
- Juvenile MG: onset <18 years
 ~10% of cases; slightly higher in
 females

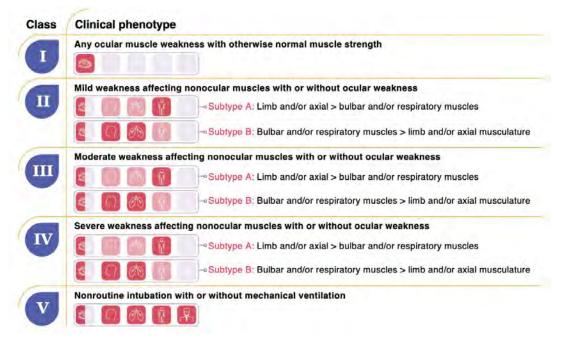
Better outcomes observed among patients with later-onset MG

Classifications

Clinical status

- Ocular MG: weakness restricted to ocular muscles: ~20%
- Generalized MG: weakness in other muscles
 - Bulbar, Axial, Limb
 - Respiratory

Antibody types


- Anti-AChR: ~50%- 85%
- Anti-MuSK: <10%

Thymoma

- Occurs in ~10% to 15% of patients with MG
- Patients with thymoma tend to be AChR+ with moderate-to-severe course of generalized symptoms
- Thymic follicular hyperplasia with large germinal centers of B cells tends to be a more common finding than thymoma in MG

AChR, acetylcholine receptor; MuSK, muscle-specific kinase. 1. Hehir MK. Neurol Clin. 2018;36(2):253-260. 2. Gilhus NE. Lancet Neurol. 2015;14(10):1023-1036. 3. Hehir MK. Continuum (Minneap Minn). 2022;28(6):1615-1642. 4. Punga AR. Lancet Neurol. 2022;21(2):176-188. 5. Morren JA. Cleve Clin J Med. 2023;90(2):103-113. 6. Gwathmey KG. Semin Neurol. 2015;35(4):327-339. 7. Dresser L. J Clin Med. 2021;10(11):2235.

MGFA Clinical Classification

MGFA, Myasthenia Gravis Foundation of America. 1. Gwathmey KG, Burns TM. Semin Neurol. 2015;35(4):327-339.

Clinical Manifestations

Motor Weakness

Subacute onset of fatiguing and fluctuating motor weakness

Variable severity over the course of a day

Slowly progressive course with relapsing/remitting symptoms

Excess heat, sustained exertion, provocative medications, or systemic illness may incite worsening

Distribution of weakness

Ocular Manifestations

Ocular symptoms tend to be among the earliest manifestations of disease¹

Asymmetric, fluctuating, and fatiguing eyelid ptosis

Dysconjugate gaze with symptomatic binocular diplopia

Ocular examination features include:

- Eye closure weakness
- Cogan lid twitch
- Curtain sign
- Ice pack test

Bulbar and Respiratory Weaknesses

Cranial/bulbar weakness is common in patients with generalized disease Manifestations:

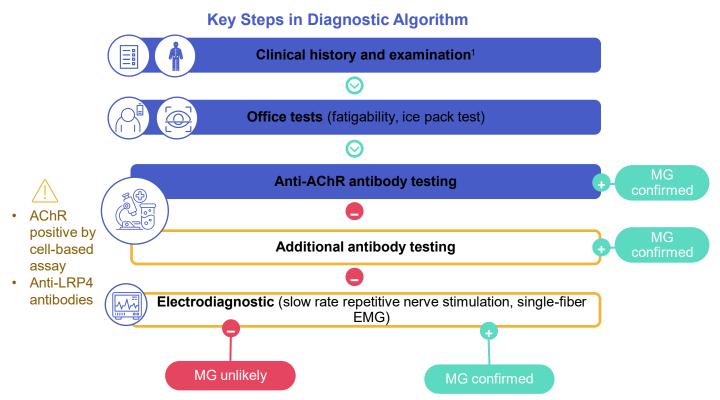
- Jaw closure weakness and fatigue with sustained activation
- Flattened/blunted facial expressivity/excursion
- Dysphagia predominantly to liquids
- Nasal regurgitation (due to prominent soft palate weakness)
- Dysarthria and dysphonia (characterized by nasal, breathy, or hoarse tone)

Respiratory weakness is observed in up to 40% of patients

Limb Manifestations

Approximately 75% of patients will eventually develop limb weakness

- Asymmetric and proximal-predominant pattern
- Neck flexors >> extensors
- Only 10% to 15% will manifest limb weakness at initial presentation


Generalization of disease occurs within 2 to 3 years of initial onset

 More prevalent in seropositive patients

^{1.} Hehir MK. Neurol Clin. 2018;36(2):253-260. 2. Gwathmey KG. Semin Neurol. 2015;35(4):327-339. 3. Gilhus NE. Lancet Neurol. 2015;14(10):1023-1036. 4. Punga AR. Lancet Neurol. 2022;21(2):176-188. 5. Gilhus NE. J Neurol. 2023;270(7):3329-3340. 6. Juel VC. Orphanet J Rare Dis. 2007;2:44.

AChR, acetylcholine receptor; EMG, electromyography; LRP4, lipoprotein-related protein 4; MG, myasthenia gravis. 1. Hehir MK 2nd. *Continuum (Minneap Minn)*. 2022;28(6):1615-1642.

Considerations for Differential Diagnosis 1-3

Disease mimics	Ptosis	Ophthalmoparesis	Diplopia	Asymmetry	Clinical feature(s)
Myasthenia gravis	Yes	Yes	Yes	Yes	
Congenital myasthenic syndromes	Yes	Variable	Rarely	No	Congenital
Mitochondrial disease	Yes	Yes	No	Rare	Systemic manifestations
Muscular dystrophy	Yes	Variable	Variable	No	Congenital Minimal fluctuation
Orbital myositis	Rare	Yes	Yes	Yes	Orbital pain
Thyroid orbitopathy	No	Yes	Yes	Yes	Proptosis
Brainstem lesion	Yes	Yes	Yes	Yes	Localized/fixed deficit Long-tract signs
Cranial neuropathy	Yes	Yes	Yes	Yes	Localized/fixed deficit
Lambert-Eaton syndrome	Yes	Yes	Yes	Yes	Areflexia + facilitation Dysautonomia

Table adapted from Punga et al, 2022.1 Used with permission from Elsevier.

^{1.} Punga AR. Lancet Neurol. 2022;21(2):176-188. 2. Gwathmey KG. Semin Neurol. 2015;35(4):327-339. 3. Juel VC. Orphanet J Rare Dis. 2007;2:44.

MG Management

Treatment goal: Complete disease remission or minimal manifestations of disease, defined as presence of mild and nonimpairing motor weakness^{1,2}

Therapeutic approaches¹:

- Phenotype/weakness distribution
- Serum antibody status
- Association with thymoma
- · Medical comorbidities

Pharmacologic interventions¹:

- Symptomatic and transiently improve weakness, or
- Disease-modifying/immunosuppressive

Surgical intervention limited to thymectomy³

1. Hehir MK 2nd. Continuum (Minneap Minn). 2022;28(6):1615-1642. 2. Sanders DB. Neurology. 2016;87(4):419-425. 3. Iorio R. Nat Rev Neurol. 2024;20(2):84-98.

Pharmacological Interventions

Symptomatic treatments^{1,2}

AChEi

Pyridostigmine

Alternative agents

- Albuterol, 3,4-diaminopyridine
- Ephedrine

Disease modifying/immunosuppressive treatments^{1,3-5}

Corticosteroids

T- and/or B-cell activation/ proliferation blockers

Azathioprine
Mycophenolate mofetil
Methotrexate
Cyclosporine
Tacrolimus
Satralizumab*
Telitacicept*

B-cell cytotoxic agents

Rituximab Inebilizumab*

Complement pathway inhibitors

Eculizumab, ravulizumab, and zilucoplan Pozelimab + cemdisiran,* gefurulimab,* vemircopan,* and iptacopan*

Neonatal Fc receptor antagonists

Efgartigimod
Rozanolixizumab
Nipocalimab* and
batoclimab*

AChEi, acetylcholinesterase inhibitor; MG, myasthenia gravis.

^{1.} Hehir MK 2nd. Continuum (Minneap Minn). 2022;28(6):1615-1642. 2. Gilhus NE. Lancet Neurol. 2015;14(10):1023-1036. 3. Morren JA. Cleve Clin J Med. 2023;90(2):103-113. 4. Vanoli F. Curr Opin Neurol. 2023;36(5):410-415. 5. Nair SS. Immunotargets Ther. 2023;12:25-45.

^{*}Investigational for MG.

Therapeutic Management Strategies

Pyridostigmine^{1,2} + /- Early thymectomy^{1,2} (180-240 mg daily) for patients AChR+

If no clinical remission

3

Acute, adjunct, bridging therapies¹

IVIG infusion

Loading dose 2 g/kg and maintenance between 0.4-1 g/kg with variable dosing interval

Plasma exchange

2

Immunosuppression

Corticosteroid¹⁻³

- Prednisone: 20-60 mg daily with slow tapers thereafter
- Efficacy onset: 2-6 weeks*

Azathioprine +/-

- Azathioprine: 50 mg daily and titrated to 150 mg daily (2-3 mg/kg/d)
- Efficacy onset: >6 months

Mycophenolate mofetil +/-

- 500 mg daily and titrated to 500-1500 mg BID
- Efficacy onset: >6 months

4

Novel therapies

(Approved for use in AChR+, generalized MG patients)

Complement pathway inhibitors^{1,4-6}

- Meningococcus inoculation required
- Efficacy onset within 2 weeks

FcRn inhibitors^{1,4-6}

- Efficacy onset: 1-5 weeks
- Redosing frequency not established

*Transient worsening of weakness may occur within the first 3 weeks. AChR, acetylcholine receptor; BID, twice daily; FcRn, neonatal fragment crystallizable receptor; IVIG, intravenous immunoglobulin; MG, myasthenia gravis. 1. Hehir MK 2nd. Continuum (Minneap Minn). 2022;28(6):1615-1642. 2. Gilhus NE. Lancet Neurol. 2015;14(10):1023-1036. 3. Morren JJ. Cleve Clin J Med. 2023;90(2):103-113. 4. Iorio R. Nat Rev Neurol. 2024;20(2):84-98. 5. Narayanaswami P. Neurology. 2021;96(3):114-122. 6. Vanoli F. Curr Opin Neurol. 2023;36(5):410-415

Clinician Resources

Key Publications

- Sanders DB, et al. Neurology. 2016;87(4):419-425.
- Narayanaswami P, et al. Neurology. 2021;96(3):114-122.
- Beloor Suresh A, et al. [Updated 2023 Aug 8]. In: StatPearls [Internet]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559331/
- Morren JA, Li Y. Cleve Clin J Med. 2023;90(2):103-113.

Access companion MDA webinar here

MEDICAL EDUCATION